An improved mixture of probabilistic PCA for nonlinear data-driven process monitoring
نویسندگان
چکیده
An improved mixture of probabilistic principal component analysis (PPCA) has been introduced for nonlinear datadriven process monitoring in this paper. To realize this purpose, the technique of a mixture of probabilistic principal component analysers is utilized to establish the model of the underlying nonlinear process with local PPCA models, where a novel composite monitoring statistic is proposed based on the integration of two monitoring statistics in modified PPCA-based fault detection approach. Besides, the weighted mean of the monitoring statistics aforementioned is utilised as a metrics to detect potential abnormalities. The virtues of the proposed algorithm have been discussed in comparison with several unsupervised algorithms. Finally, Tennessee Eastman process and an autosuspension model are employed to demonstrate the effectiveness of the proposed scheme further.
منابع مشابه
A Mixture Probabilistic PCA Model for Multivariate Manufacturing Processes Monitoring
− A mixture probabilistic Principal Component Analysis (PCA) model is proposed as a multivariate process monitoring tool in this paper. High dimensional measurement data could be aggregated into some clusters based on the mixture distribution model, where the number of these clusters is automatically determined by the maximum likelihood estimation procedure. The multivariate statistical process...
متن کاملProcess Monitoring based on Nonlinear Wavelet Packet Principal Component Analysis
For using process operational data to realize process monitoring, kinds of improved Principal Components Analysis (PCA) have been applied to cope with complex industrial processes. In this paper, a novel nonlinear wavelet packet PCA (NLWPPCA) method, which combines input training network with wavelet packet PCA, is proposed. Wavelet packet PCA integrates ability of PCA to de-correlate the varia...
متن کاملMixtures of Probabilistic Principal Component Analysers
Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a combination of local linear PCA projections. However, conventional PCA does not correspond to a prob...
متن کاملMixtures of Principal Component Analyzers
Principal component analysis (PCA) is a ubiquitous technique for data analysis but one whose effective application is restricted by its global linear character. While global nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data nonlinearity by a mixture of local PCA models. However, existing techniques are limited by the absence of a probabilistic formalism wi...
متن کاملMultivariate Statistical Process Control Using Enhanced Bottleneck Neural Network
Abstract: Monitoring process upsets and malfunctions as early as possible and then finding and removing the factors causing the respective events is of great importance for safe operation and improved productivity. Conventional process monitoring using principal component analysis (PCA) often supposes that process data follow a Gaussian distribution. However, this kind of constraint cannot be s...
متن کامل